Al Weekly Report
Liquid Neural Networks

ATl WEEKLY REPORT BRIEFING

By AI Research Team

Liquid Neural Networks

Chapter 1: Introduction and Background

Liquid Neural Networks represent an exciting evolution in the
field of artificial intelligence, combining ideas from traditional
neural networks with insights from dynamical systems theory.
In this chapter, we introduce the concept and provide the
necessary background to understand why liquid models are
emerging as powerful tools for handling complex, time-varying
data.

What Are Neural Networks?

At their core, neural networks are computational models inspired by the
human brain. They consist of layers of interconnected nodes (or neurons)
that process information. Traditional neural networks typically operate with
fixed architectures, meaning that once a network is trained, its internal
parameters remain constant during inference.

The Evolution Toward Liquid Neural Networks

https://weeklyreport.ai/

Traditional models have proven effective for many tasks, such as image
recognition and language processing. However, they often struggle with
dynamic environments where data changes over time or when the system
needs to adapt quickly to new information.

Liquid Neural Networks introduce the idea of “liquidity” into the network’s
behavior. This concept borrows from fluid dynamics, where the system
continuously adapts and evolves. Instead of having fixed weights and static
behavior, a liquid network’s internal states can change dynamically over time.

Key Concept: Dynamic Adaptation

Imagine you are trying to predict the weather. The underlying conditions
change every minute, and a static model might not be able to keep up with
these rapid changes. A liquid neural network, however, is designed to adapt
its internal state on the fly. This dynamic adaptation can be thought of as
allowing the network to “flow” with the data, similar to how a liquid
conforms to the shape of its container.

The Role of Mathematics in Liquid Neural Networks

While the overall ideas are conceptually accessible, there is a strong
mathematical backbone behind these networks. In traditional neural
networks, you might see formulas such as the following:

y = f (X2, wizi +b)

This formula represents the output y of a neuron, where x; are the inputs, w;
are the weights, b is the bias, and f is an activation function.

Liquid Neural Networks extend this idea by incorporating differential
equations to model how the network’s state evolves over time. For example,
one might encounter an equation like this:

W) — _h(t) + o (Wh(t) + Ux(t) + b)

In this equation, h(t) represents the state of the network at time ¢ , and the
equation describes how this state changes continuously over time. The
function o serves as an activation function, and W, U , and b are parameters
that help determine the dynamics of the network.

Why “Liquid”?

The term “liquid” is used because these networks can adapt much like a liquid
adapts to its container. Their continuously changing internal states enable
them to respond in real time to new and evolving data patterns. This makes
them particularly well-suited for applications where the data is not static,
such as robotics, real-time control systems, and time-series forecasting.

AGlimpse Into the Future

Liquid Neural Networks are still an emerging technology, but their promise
lies in their ability to handle real-world complexities that static models may
struggle with. As research progresses, we anticipate that these networks will
unlock new capabilities and lead to further innovations in Al.

In the following chapters, we will delve deeper into the mathematical
foundations, architecture, training strategies, and applications of Liquid
Neural Networks. This chapter has provided a high-level overview to set the
stage for a deeper exploration of these fascinating models.

Chapter 2: Mathematical and Theoretical Foundations

In this chapter, we explore the core mathematical ideas and theoretical
principles that underpin Liquid Neural Networks.

Dynamical Systems and Differential Equations

Liquid Neural Networks are inspired by dynamical systems—systems that
change continuously over time. At the heart of this idea is the differential
equation. Differential equations describe how a quantity changes with respect
to another (often time). A simple example of a differential equation is:

W — f(y(t),t)

In this formula, dz—f) represents the rate of change of y(¢) at time ¢ , and

f(y(t),t) is a function that governs this change. This type of equation helps
us understand how systems evolve over time.

The Role of Continuous-Time Dynamics

Traditional neural networks typically work in discrete time steps. In contrast,
Liquid Neural Networks leverage continuous-time dynamics. This allows
them to model systems where changes occur smoothly and continuously. For
instance, the evolution of the network’s state can be described by an equation
like:

M) — _n(t) + o (Wh(t) + Ux(t) + b)

Here:
 h(t) is the state of the network at time ¢ .
o Theterm —h(¢) can be seen as a decay or reset mechanism.

e 0 isan activation function that introduces nonlinearity.

« W and U are weight matrices, while b is a bias vector.

x(t) is the input at time ¢ .

This equation illustrates how the network’s state dynamically evolves,
continuously adapting as new data arrives.

Key Mathematical Concepts

To fully grasp Liquid Neural Networks, it helps to be familiar with a few
additional mathematical concepts:

« Linear Algebra:
Understanding vectors and matrices is essential. Operations such as
matrix multiplication play a critical role in how inputs are processed
within a network.

« Nonlinear Functions:
Activation functions like the sigmoid or ReLU introduce nonlinearity into

the model. These functions ensure that the network can capture complex
patterns in the data.

« Stability Analysis:
In dynamical systems, it is important to know whether a system will
settle into a steady state or continue changing unpredictably. Tools from
stability analysis help us understand and design networks that behave in
a controlled manner.

Bringing It All Together

By combining these mathematical tools, Liquid Neural Networks are able to
model environments that evolve continuously over time. Instead of
processing data in isolated snapshots, these networks maintain an internal
state that flows and adapts, capturing both short-term changes and long-
term trends.

The equations and concepts introduced in this chapter form the theoretical
backbone for understanding how liquid models operate. As we move to later
chapters, we will see how these mathematical principles are applied in
practice, guiding the design and training of these adaptive networks.

Chapter 3: Architecture of Liquid Neural Networks

In this chapter, we delve into the architecture that makes Liquid Neural
Networks unique. We explain the structure and components of these
networks, along with the underlying mechanisms that enable their dynamic
behavior.

Overview of Network Components

Liquid Neural Networks build upon the traditional structure of neural
networks but introduce elements that allow them to change over time. Their
architecture generally includes:

« Neurons: The basic computational units that process incoming signals.

« Connections: Links between neurons through which information flows.

« Dynamic States: Unlike static networks, these have states that evolve
continuously.

Dynamic States and Liquid Time-Constants

A defining feature of liquid architectures is their dynamic state. Traditional
neural networks use fixed weights once trained, but liquid models incorporate
time-dependent dynamics. This means that the state of a neuron, often
denoted as h(t) , is not fixed but evolves according to the network’s ongoing

interactions and inputs.

One key component is the concept of liquid time-constants, which enable the
network to adjust the rate at which neurons update their state. A simplified
dynamic model for a neuron’s state might be expressed as:

M) — _1n(t) + o (Wh(t) + Ux(t) + b)

In this equation:
 h(t) is the state of the neuron at time ¢ .
« T represents the time constant, controlling the speed of state change.

e Theterm — %h(t) acts as a decay, ensuring that the state does not grow
indefinitely.

e 0 isan activation function that introduces nonlinearity.
« W and U are weight matrices, and b is the bias.

« x(t) represents the input at time ¢ .

Layers and Their Interactions

Liquid Neural Networks can be structured in layers, much like conventional
networks. However, each layer in a liquid model processes information not
only from its immediate inputs but also considers the continuously evolving
state of its neurons.

Example of Layered Dynamics

Consider a two-layer liquid neural network where the first layer processes the
input data and the second layer refines the output based on the evolving state.
The dynamics in the first layer could be described by:

dhzz(t) = _Tilh(l)(t) +o (W(l)hﬂ)(t) +UWx(t) + b(l))

For the second layer, the state evolution might be:

thi(t) — _T1—2h(2) (t) + o (W(2)h(2)(t) +U@RO () + b(2>)

Here:

o« h®(¢) and h®(¢) denote the states of the first and second layers
respectively.

« 7 and 7, are the time constants for the respective layers.

« The equations show how each layer not only reacts to incoming signals
but also integrates its own state over time.

Nonlinear Activation and State Evolution

The activation function o is central to enabling complex behaviors within the
network. It introduces nonlinearity, which allows the network to capture
intricate patterns in the data. Common choices for ¢ include functions like
the sigmoid or ReLU. In a liquid network, this activation is applied
dynamically, affecting the state evolution continuously.

Architectural Flexibility and Adaptation

One of the strengths of Liquid Neural Networks is their architectural
flexibility. By allowing time-dependent adaptation in their internal states,
these networks can be tailored to a wide range of tasks that involve temporal
data. They can adjust to new patterns on the fly, making them well-suited for
applications such as:

« Real-time control systems
« Time-series forecasting

« Robotics and autonomous systems

This flexibility is achieved through a careful balance of the decay
mechanisms, dynamic time-constants, and nonlinear activation functions,
ensuring that the network can maintain stability while adapting to changing
inputs.

In the next chapter, we will explore the training and optimization strategies
specific to Liquid Neural Networks, discussing how these dynamic
architectures are effectively trained and deployed.

Figure 1. A example of a Liquid Neural Network

Chapter 4: Training and Optimization Strategies

In this chapter, we explore how Liquid Neural Networks are trained and
optimized. The goal is to adjust the network’s parameters so that it can adapt
its dynamic behavior to perform well on specific tasks, such as time-series
prediction or control tasks.

Overview of the Training Process

Training Liquid Neural Networks involves a process similar to that used in
traditional neural networks but with additional challenges due to their
dynamic nature. The training process typically includes:

« Defining a Loss Function:
The loss function quantifies how well the network’s predictions match
the target outcomes. A common example is the mean squared error (MSE)
loss:

L=53T () - y@)

Backpropagation Through Time (BPTT):

Because the network’s state evolves continuously, training requires
unfolding the network in time. BPTT is an extension of backpropagation
that computes gradients across multiple time steps.

Gradient-Based Optimization:

Once gradients are computed, algorithms like stochastic gradient descent
(SGD) or Adam are used to update the network’s parameters. The update
rule for a parameter # might be expressed as:

0<—0—n%—§

where 7 is the learning rate.

Special Considerations for Liquid Networks

Liquid Neural Networks introduce extra complexities due to their dynamic
state evolution:

Continuous State Adaptation:

The internal state h(¢) evolves over time according to differential
equations. This requires careful handling during training to ensure that
the gradient information is propagated accurately over time.

Stability and Vanishing/Exploding Gradients:

The continuous nature of the dynamics can lead to issues such as
vanishing or exploding gradients. Techniques like gradient clipping or
careful initialization of time constants 7 are often necessary.

Temporal Data Handling:

Because these networks work with sequences, the training process must
manage dependencies across different time steps. This is particularly
important in tasks where past information heavily influences future
predictions.

Loss Function and Optimization Dynamics

The overall goal is to minimize the loss function L across a sequence of time

steps. As the network processes data continuously, the loss function may be
integrated over time. An example of a time-integrated loss function is:

L= [£((t),y(t) dt

This integral form emphasizes that the network’s performance is evaluated
continuously rather than at discrete time intervals.

Training Pipeline Overview

The training pipeline for Liquid Neural Networks can be summarized as
follows:

Data Input:
Sequences of time-dependent data are fed into the network.

Forward Pass:
The network processes the data through its dynamic state evolution,
computing outputs g(t) over time.

Loss Computation:
The loss function L is computed by comparing the network outputs to the

true values.

Backward Pass (BPTT):
The error is propagated back through time to compute gradients.

Parameter Update:
The network’s parameters (including weights, biases, and time
constants) are updated using a gradient-based optimizer.

Figure 2. Training process for Liquid Neural Networks

10

Input Data Sequence

v
Forward Pass: Compute Dvnamic States

v
Compute Network Output

v
Loss function

v
Backpropaaation Throuah Time (BPTT)

v
Gradient Computation

v
Parameter Update

This graph outlines the step-by-step training process, from data input
through forward and backward passes to the parameter update, highlighting
how the dynamic nature of the network is handled through BPTT and
gradient-based optimization.

In the next chapter, we will explore real-world applications and case studies
to see how these training strategies translate into effective performance on
challenging tasks.

Chapter 5: Applications and Case Studies

In this chapter, we explore how Liquid Neural Networks are applied across
various real-world domains and review case studies that illustrate their
unique capabilities.

n

Applications of Liquid Neural Networks

Liquid Neural Networks excel in scenarios where the data changes
continuously over time. Their dynamic state adaptation makes them
especially useful in the following areas:

Time-Series Forecasting:

Liquid Neural Networks can capture both short-term fluctuations and
long-term trends in sequential data. They are ideal for predicting weather
patterns, stock market movements, and energy consumption.

Robotics and Real-Time Control:

In robotics, rapid adaptation is critical. Liquid Neural Networks are used
in control systems where the network must quickly adjust to changing
sensor inputs and environmental conditions.

Autonomous Vehicles:

Self-driving cars require models that respond immediately to a stream of
sensory data. The continuous dynamics of liquid networks help in
processing and reacting to real-time information.

Medical Diagnostics:
In monitoring patient data over time (e.g., ECG signals), these networks
can detect subtle changes and predict critical events.

Financial Modeling:
Liquid models can be employed to analyze high-frequency trading data,
adapting to market volatility with greater sensitivity than static models.

Case Studies

Time-Series Forecasting

One notable case study involves using Liquid Neural Networks for weather
prediction. By continuously updating their internal state based on new sensor
data, these networks can improve forecast accuracy over traditional static
models.

Example Mathematical Model:

12

M) — _1h(t) + o (Wh(t) + Ux(t) + b)

In this model, h(t) represents the evolving state of the network, capturing the
underlying dynamics of weather changes over time.

Robotics and Control Systems

In robotics, Liquid Neural Networks are deployed to manage continuous
control tasks. For instance, a robotic arm can use such a network to adjust its
movement in response to varying loads or environmental obstacles. The
network’s ability to adapt in real time leads to smoother and more precise
control.

Autonomous Vehicles

Autonomous vehicles benefit from the dynamic properties of liquid networks.
By integrating information from cameras, LiDAR, and other sensors, the
network continuously refines its predictions of the vehicle’s surroundings.
This results in faster reaction times and improved decision-making in
complex traffic scenarios.

Figure 3. Applications of Liquid Neural Networks

Liauid Neural Networks

.

‘ Time-Series Forecastina ‘ ‘ Robotics & Control Systems ‘ ‘ Autonomous Vehicles ‘ ‘ Medical Diaanostics ‘ ‘ Financial Modelina ‘

This diagram provides an overview of the key domains where liquid networks
are making an impact, emphasizing their versatility and dynamic capabilities.

Summary

Liquid Neural Networks are proving to be a powerful tool for tasks that
require continuous adaptation and real-time processing. Through various
case studies—from weather forecasting to autonomous vehicles—we see how
these networks can address challenges that static models struggle with. Their
ability to integrate temporal dynamics into predictions makes them especially
valuable in complex, time-dependent environments.

Chapter 6: Comparison with Traditional Neural
Networks

In this chapter, we compare Liquid Neural Networks with traditional static
neural networks. We discuss the benefits and trade-offs of liquid models,
focusing on their dynamic behavior versus the fixed structure of conventional
networks.

Dynamic vs. Static Architectures

Traditional neural networks have a fixed architecture once training is
complete. Their weights remain constant during inference, which can limit
their ability to adapt in real time. For instance, a standard neuron in a static
network computes its output as:

y=f(Q 5, wir; +b)

In contrast, Liquid Neural Networks continuously update their internal state
based on new inputs. Their dynamic nature allows them to respond flexibly to
time-varying data, as illustrated by the following state evolution equation:

M) — _1h(t) + o (Wh(t) + Ux(t) + b)

Advantages of Liquid Neural Networks

Adaptability

Liquid networks adjust their state dynamically, making them well-suited for
tasks with continuously changing data. This adaptability is especially
beneficial for applications like time-series forecasting and real-time control.

Temporal Sensitivity

14

Because liquid models capture the continuous evolution of their state, they
can effectively model long-term dependencies and temporal correlations that
static networks might miss.

Improved Robustness

The inherent adaptability of liquid networks can lead to greater robustness in
the presence of noisy or rapidly changing inputs. They are better equipped to
handle sudden shifts in the data compared to traditional models.

Chapter 7: Performance Comparison Between Liquid
Neural Networks and Deep Neural Networks

In this chapter, we examine how Liquid Neural Networks (LNNs) perform in
comparison to traditional Deep Neural Networks (DNNs). We explore aspects
such as accuracy, adaptability, computational efficiency, and training
dynamics.

Accuracy and Adaptability

LNNs have a unique advantage when it comes to handling time-dependent
and dynamic data. Their continuously evolving internal states allow them to
adapt in real time. This can lead to improved accuracy in tasks such as time-
series forecasting and control systems, where traditional DNNs might
struggle to capture rapid changes.

For example, the performance of both networks in a forecasting task can be
measured using a common metric like Mean Squared Error (MSE). The MSE is
defined as:

MSE = & 30 (y(t) — 9(¢))°

Here, y(t) represents the true value at time ¢ , and §(¢) is the predicted value.
Studies have shown that for certain dynamic environments, LNNs achieve
lower MSE due to their ability to adjust to new data continuously.

15

Computational Efficiency

DNNss are typically optimized for high-performance inference and training in
static settings. Their fixed architectures allow for extensive hardware
optimization and parallel processing. However, this rigidity can become a
limitation in environments where the data distribution changes rapidly.

In contrast, LNNs incorporate continuous-time dynamics, which can
introduce additional computational overhead. The use of differential
equations, for instance, necessitates integration over time, potentially
increasing the computational cost per inference. An abstract representation
of such continuous dynamics is:

M) — _1In(t) + o (Wh(t) + Ux(t) + b)

Balancing this overhead against the benefits of adaptability is a key
consideration. While LNNs might be more computationally intensive in some
cases, their real-time adaptation can lead to overall efficiency gains in
dynamic applications.

Training Dynamics and Convergence

Training DNNs typically involves methods like stochastic gradient descent
(SGD) or Adam, applied to a fixed architecture. This allows for well-
understood convergence properties and optimization routines.

Training LNNs, however, involves additional complexity because of their
dynamic states. Techniques such as Backpropagation Through Time (BPTT)
are used to account for temporal dependencies, which can make the training
process longer and more sensitive to hyperparameter tuning. The update rule
for a parameter 6 in either model is expressed as:

0« 0—nk

Here, 1 is the learning rate, and L is the loss function (such as the time-
integrated loss for LNNs).

16

Robustness to Changing Environments

One of the significant strengths of LNNs is their robustness in non-stationary
environments. Their ability to continually adapt means that they can handle
changes in the underlying data distribution more gracefully than DNNs. In
contrast, DNNs may require retraining or additional fine-tuning when faced
with new types of data or significant distribution shifts.

Figure 4. A comparison of LNN performance vs. DNN’s in analyzing financial
time series data

Trade-offs and Limitations

Computational Complexity

The dynamic nature of Liquid Neural Networks often requires more complex
training procedures, such as Backpropagation Through Time (BPTT), which
can be computationally intensive.

Stability Concerns

Managing the continuous state evolution poses challenges like vanishing or
exploding gradients. Ensuring stability requires careful tuning of time
constants and other hyperparameters.

Interpretability

While traditional networks are well-studied and understood, the dynamic
behavior of liquid models can sometimes complicate the interpretation of
how specific inputs influence the output over time.

Hybrid Approaches

17

In some scenarios, researchers combine static and liquid components to
leverage the strengths of both architectures. These hybrid models aim to
achieve the flexibility of liquid networks while retaining some of the
simplicity and efficiency of traditional networks.

'/J Traditional Neural Networks
’ Fixed Architecture ‘ J Liquid Neural Networks ’ Static Weiahts ‘ ’ Discrete Time Steps ‘

’ Dvnamic Architecture ‘ ’ Continuously Updated States ‘ ’ Continuous Time Dvnamics ‘

Figure 5. Comparison between traditional and liquid neural networks

This diagram contrasts the fixed nature of traditional networks with the
dynamic properties of liquid models, emphasizing the key areas where they
differ.

Summary

Liquid Neural Networks offer a powerful alternative to traditional static
models by incorporating continuous adaptation and temporal dynamics.
While they bring significant advantages in handling real-time and time-
dependent data, they also introduce challenges in training complexity,
stability, and interpretability. Understanding these trade-offs is essential
when selecting the appropriate architecture for a given task.

Chapter 8: Future Directions and Open Research
Questions

In this chapter, we explore emerging trends, potential improvements, and
open research questions in the field of Liquid Neural Networks. As a dynamic
and evolving area of study, liquid models offer promising opportunities as
well as challenges that require further investigation.

Emerging Trends

18

Integration with Other Technologies

Researchers are exploring how Liquid Neural Networks can be integrated with
other AI and machine learning paradigms, including:

« Reinforcement Learning: Combining liquid models with reinforcement

learning to improve decision-making in dynamic environments.

« Neuromorphic Computing: Implementing liquid dynamics on hardware
that mimics the neural architecture of the human brain, potentially
leading to more efficient processing.

Scalability and Efficiency

A major focus is on scaling liquid models to handle large datasets and
complex tasks without compromising the dynamic adaptation capabilities.
Efforts include:

« Developing more efficient training algorithms.

« Optimizing the network architecture to reduce computational load.

Open Research Questions

Stability and Convergence

One significant area of inquiry is understanding how to maintain stability in
continuously evolving networks. Questions include:

« What are the optimal settings for time constants 7 that balance
responsiveness with stability?

« How can we design training strategies to mitigate issues like vanishing or
exploding gradients in continuous-time models?

A typical stability equation under investigation is:

M) — _1n(t) + o (Wh(t) + Ux(t) + b)

19

Interpretability and Transparency

As liquid networks become more complex, understanding their decision-
making process is crucial. Researchers are working on:

Techniques for visualizing the evolution of internal states.

Methods to explain how specific inputs affect the network’s dynamic
behavior.

Generalization Across Domains

Another open question is how well liquid models generalize to different
domains beyond time-series forecasting and control systems. Future work
may explore:

Applications in natural language processing, where context and sequence
are vital.

Cross-domain learning where a single model adapts to multiple types of
dynamic data.

Interdisciplinary Collaboration

The development of Liquid Neural Networks is inherently interdisciplinary,
involving:

Mathematics: For the continuous-time modeling and differential
equations.

Computer Science: For algorithm development and computational
optimization.

Neuroscience: For insights into biological neural dynamics and
adaptability.

Engineering: For real-world applications in robotics and autonomous
systems.

This collaboration can drive innovative solutions that bridge theoretical
advances with practical implementations.

20

Chapter 9: Appendices and Supplementary Materials

This chapter provides additional resources to support your understanding of
Liquid Neural Networks. It includes detailed mathematical derivations, code
examples for implementation, a glossary of key terms, and recommendations
for further reading.

Detailed Mathematical Derivations

For readers interested in a deeper dive into the mathematics behind Liquid
Neural Networks, this section includes extended derivations. For example, a
derivation of the continuous state update rule may begin with the basic
differential equation:

M) — _1n(t) + o (Wh(t) + Ux(t) + b)

A step-by-step derivation can explore:

« Separation of Variables: Techniques to solve the homogeneous part.
- Integration: Methods to integrate the inhomogeneous term.

o Stability Analysis: Insights into conditions ensuring convergence of h(t) .

These derivations provide the mathematical foundation for understanding
how dynamic adaptation is achieved.

Code Examples and Implementation Guidelines

For practical application, a number of code examples are provided. These
examples are intended to help you implement a basic Liquid Neural Network
in popular frameworks such as TensorFlow or PyTorch. Below is a pseudo-
code snippet illustrating the integration of dynamic state updates:

Pseudo-code for a dynamic state update in a Liquid Neural
Network
def liquid_state_update(h, x, W, U, b, tau, dt):

21

Compute the derivative of the state using the
differential equation

dh_dt = - (1 / tau) * h + activation(np.dot(W, h) +
np.dot(U, x) + b)

Update state using Euler's method
h_next = h + dh_dt * dt

return h_next

Example usage:

h: current state vector

x: current input vector

W, U: weight matrices

b: bias vector

tau: time constant

dt: time step for integration

These guidelines aim to provide a starting point for experimentation and
further customization.

Glossary of Key Terms

Liquid Neural Network (LNN): A neural network that continuously adapts
its internal state over time using differential equations.

Deep Neural Network (DNN): A neural network with multiple layers and
fixed parameters during inference.

Time Constant (7): A parameter that controls the speed of state evolution
in a dynamic system.

Activation Function (¢): A nonlinear function applied to the output of
neurons to introduce nonlinearity.

Backpropagation Through Time (BPTT): An extension of the
backpropagation algorithm used for training networks with temporal
dependencies.

22

o Euler’s Method: A numerical technique for solving ordinary differential
equations.

Recommended Further Reading

For readers who wish to delve even deeper into the topics covered in this

primer, consider exploring the following:

« Research articles on continuous-time neural networks and their
applications.

« Textbooks on dynamical systems and differential equations.

e Online tutorials and courses focusing on advanced neural network
architectures.

Al Weekly Report Connect With Us Quick Links

Your trusted source forin- About Us
depth Al news, analysis, and f , ﬂﬂ

technical insights. Contact

Privacy Policy

© 2025 Al Weekly Report. All rights reserved.

23

https://weeklyreport.ai/
https://twitter.com/AIWeeklyReport
https://www.linkedin.com/company/ai-weekly-report/
http://localhost:4322/about
http://localhost:4322/contact
http://localhost:4322/privacy

