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Introduction

In the rapidly evolving landscape of artificial intelligence,
neural networks have emerged as a cornerstone, driving
advancements in machine learning, data analysis, and
automation. Among the myriad architectures proposed, the
Kolmogorov-Arnold Neural Network (KANN) stands out,
offering a unique approach rooted in rigorous mathematical
theory. While the prevailing models like convolutional and
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recurrent neural networks have garnered widespread acclaim
for their performance across various tasks, KANNs present a
compelling alternative that merits closer examination.

The foundation of KANNs is anchored in the pioneering work of Andrey
Kolmogorov and Vladimir Arnold, who formulated the superposition
theorem and its extensions. This theorem posits that any continuous
multivariate function can be represented as a finite composition of
continuous functions of a single variable and addition. Such a theoretical
underpinning holds profound implications for the design and functionality of
neural networks, promising enhanced representation capabilities and
potentially more efficient training paradigms.

Despite their theoretical elegance, Kolmogorov-Arnold neural networks have
not yet enjoyed the same level of practical application and recognition as
their more conventional counterparts. This paper seeks to bridge this gap by
elucidating the architecture, training methods, and potential applications of
KANNs. Through rigorous analysis and experimental validation, we aim to
showcase the strengths and address the limitations of this intriguing neural
network model.

In an era where the capabilities of artificial intelligence are expanding at an
unprecedented rate, understanding and leveraging the full spectrum of
available neural network architectures is crucial. By delving into the nuances
of KANNs, we contribute to a broader comprehension of neural networks and
open new avenues for research and application. The subsequent sections will
unpack the theoretical foundations, architectural details, and practical
implementations of Kolmogorov-Arnold neural networks, offering insights
that could pave the way for future innovations in the field.
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Theoretical Foundation

Kolmogorov-Arnold Superposition Theorem

The Kolmogorov-Arnold superposition theorem is a pivotal result in the field
of functional analysis. It states that any continuous function f : [0,1]^n → ℝ
can be represented as a finite composition of continuous functions of one
variable and addition. Specifically, for any continuous function f, there exist
continuous functions φ_i : ℝ → ℝ and ψ_i : ℝ → ℝ such that:

Here,  and  are continuous functions that transform the input variables 
 into a sum that is then mapped by the  functions.

Arnold’s Extension

Building on Kolmogorov’s theorem, Vladimir Arnold extended this concept,
showing that the number of required inner functions can be reduced under
certain conditions. Arnold demonstrated that it is possible to represent f
using:

This reduction significantly impacts the practical implementation by
decreasing the computational complexity and the number of components
required.

Examples

Kolmogorov-Arnold Superposition Theorem

Example 1:

f(x1,x2,...,xn)=∑i=12n+1ψi(∑j=1nϕij(xj))f(x_1, x_2, ..., x_n) = \sum_{i=1}^{2n+1} \psi_i(\sum_{j=1}^n \phi_{ij}(x_j))f(x ,x , ...,x ) =1 2 n ψ ( ϕ (x ))∑i=1
2n+1

i ∑j=1
n

ij j

ϕij\phi_{ij}ϕij ψi\psi_iψi

xjx_jxj ψi\psi_iψi

f(x1,x2,...,xn)=∑i=1n+1ψi(∑j=1nϕij(xj))f(x_1, x_2, ..., x_n) = \sum_{i=1}^{n+1} \psi_i(\sum_{j=1}^n \phi_{ij}(x_j))f(x ,x , ...,x ) =1 2 n ψ ( ϕ (x ))∑i=1
n+1

i ∑j=1
n

ij j
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Input:

Consider a simple continuous function  .

Steps:

Identify Component Functions: According to the theorem, we need to find
continuous functions  and  such that the function can be decomposed.

Decomposition:

Choosing φ and ψ:

Substitute Back:

Output:

The function is successfully decomposed as a sum of continuous functions of
one variable.

Example 2:

Input:

Consider the continuous function  .

Steps:

f(x1,x2)=x12+x22f(x_1, x_2) = x_1^2 + x_2^2f(x ,x ) =1 2 x +1
2 x2

2

ϕij\phi_{ij}ϕij ψi\psi_iψi

f(x1,x2)=ψ1(ϕ11(x1)
+ϕ12(x2))
+ψ2(ϕ21(x1)
+ϕ22(x2))f(x_1, x_2) = \psi_1(\phi_{11}(x_1) + \phi_{12}(x_2)) + \psi_2(\phi_{21}(x_1) + \phi_{22}(x_2))

f(x ,x ) =1 2 ψ (ϕ (x ) +1 11 1 ϕ (x )) +12 2 ψ (ϕ (x ) +2 21 1 ϕ (x ))22 2

ϕ11(x1)=x12,ϕ12(x2)=0\phi_{11}(x_1) = x_1^2, \phi_{12}(x_2) = 0ϕ (x ) =11 1 x ,ϕ (x ) =1
2

12 2 0

ϕ21(x1)=0,ϕ22(x2)=x22\phi_{21}(x_1) = 0, \phi_{22}(x_2) = x_2^2ϕ (x ) =21 1 0,ϕ (x ) =22 2 x2
2

ψ1(y)=y,ψ2(y)=y\psi_1(y) = y, \psi_2(y) = yψ (y) =1 y,ψ (y) =2 y

f(x1,x2)=ψ1(x12+0)
+ψ2(0+x22)f(x_1, x_2) = \psi_1(x_1^2 + 0) + \psi_2(0 + x_2^2)
f(x ,x ) =1 2 ψ (x +1 1

2 0) + ψ (0 +2 x )2
2

f(x1,x2)=x12+x22f(x_1, x_2) = x_1^2 + x_2^2f(x ,x ) =1 2 x +1
2 x2

2

f(x1,x2)=ex1⋅sin(x2)f(x_1, x_2) = e^{x_1} \cdot \sin(x_2)f(x ,x ) =1 2 e ⋅x1 sin(x )2
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Identify Component Functions: According to the theorem, we need to find
continuous functions  and  such that the function can be decomposed.

Decomposition:

Choosing φ and ψ:

Substitute Back:

Output:

The function is successfully decomposed as a sum of continuous functions of
one variable.

B-Splines

B-splines, or basis splines, are piecewise-defined polynomials used in
approximation theory and data fitting. They provide a versatile tool for
function representation and interpolation. The theory behind B-splines
involves constructing a series of polynomial segments joined at specific
points called knots.

ϕij\phi_{ij}ϕij ψi\psi_iψi

f(x1,x2)=ψ1(ϕ11(x1)
+ϕ12(x2))
+ψ2(ϕ21(x1)
+ϕ22(x2))f(x_1, x_2) = \psi_1(\phi_{11}(x_1) + \phi_{12}(x_2)) + \psi_2(\phi_{21}(x_1) + \phi_{22}(x_2))

f(x ,x ) =1 2 ψ (ϕ (x ) +1 11 1 ϕ (x )) +12 2 ψ (ϕ (x ) +2 21 1 ϕ (x ))22 2

ϕ11(x1)=ex1,ϕ12(x2)=0\phi_{11}(x_1) = e^{x_1}, \phi_{12}(x_2) = 0ϕ (x ) =11 1 e ,ϕ (x ) =x1
12 2 0

ϕ21(x1)=0,ϕ22(x2)=sin(x2)
\
p
h
i
_
{
2
1
}
(
x
_
1
)
=
0
,
\
p
h
i
_
{
2
2
}
(
x

ϕ (x ) =21 1 0,ϕ (x ) =22 2 sin(x )2

ψ1(y)=y,ψ2(y)=y\psi_1(y) = y, \psi_2(y) = yψ (y) =1 y,ψ (y) =2 y

f(x1,x2)=ψ1(ex1+0)
+ψ2(0+sin(x2))f(x_1, x_2) = \psi_1(e^{x_1} + 0) + \psi_2(0 + \sin(x_2))
f(x ,x ) =1 2 ψ (e +1

x1 0) + ψ (0 +2 sin(x ))2

f(x1,x2)=ex1⋅sin(x2)f(x_1, x_2) = e^{x_1} \cdot \sin(x_2)f(x ,x ) =1 2 e ⋅x1 sin(x )2
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Definition and Properties

A B-spline of degree k is defined recursively. The zeroth-degree B-spline, 
 , is defined as:

For k > 0, the B-spline  is defined as:

Here,  are the knots that determine where each polynomial segment begins
and ends. A knot is a point that defines the intervals over which the
polynomial segments are defined and joined together.

What are knots?

Knots are specific values in the input domain where the pieces of the
polynomial functions meet. They essentially define the intervals over which
the polynomial segments are defined and joined together.

Think of knots as points on the x-axis where you can transition from one
polynomial piece to another. In practical terms, knots help to determine
where the influence of a given control point or segment of the polynomial
begins and ends.

How do we decide what values we choose for the knots?

The values for a knot sequence in B-splines can be chosen based on several
factors, including the domain of the data, the desired smoothness of the
resulting spline, and the specific requirements of the application. Here are
some common methods and considerations for determining knot values:

Bi0(t)B_i^0(t)B (t)i
0

Bi0(t)=1ifti≤t<ti+1B_i^0(t) = 1 \quad \text{if} \quad t_i \leq t < t_{i+1}B (t) =i
0 1 if t ≤i t < ti+1

0otherwise0 \quad \text{otherwise}0 otherwise

Bik(t)B_i^k(t)B (t)i
k

Bik(t)=(t−ti)
(ti+k−ti)⋅Bik−1(t)
+
(ti+k+1−t)
(ti+k+1−ti+1)⋅Bi+1k−1(t)B_i^k(t) = \frac{(t - t_i)}{(t_{i+k} - t_i)} \cdot B_i^{k-1}(t) + \frac{(t_{i+k+1} - t)}{(t_{i+k+1} - t_{i+1})} \cdot B_{i+1}^{k-1}(t)

B (t) =i
k ⋅(t −t )i+k i

(t−t )i B (t) +i
k−1 ⋅(t −t )i+k+1 i+1

(t −t)i+k+1 B (t)i+1
k−1

tit_iti
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1. Uniform Knot Sequence

In a uniform knot sequence, the knots are evenly spaced. This is the simplest
approach and is often used for equally spaced data points.

Example:

For 6 data points, you might choose a uniform knot sequence like:

t=[0, 1, 2, 3, 4, 5]

2. Non-Uniform Knot Sequence

In a non-uniform knot sequence, the knots can be spaced irregularly. This
approach allows more flexibility and can be used to give more control points
influence over specific regions of the curve.

Example:

If you have data points that are not evenly spaced, you might choose a knot
sequence like:

t = [0, 0.5, 1.5, 2.5, 4, 5]

3. Clamped or Open Knot Sequence

A clamped or open knot sequence repeats the first and last knots to ensure
that the B-spline starts and ends at the first and last control points. This is
useful for creating splines that touch the boundary points.

Example:

For a cubic B-spline with 4 control points, you might choose:

t=[0, 0, 0, 1, 2, 3, 3, 3]

Steps to Determine Knot Values

Determine the Degree of the B-Spline: The degree k of the B-spline
influences the number of knots and the smoothness of the spline.
Common choices are linear (degree 1), quadratic (degree 2), and cubic
(degree 3).

• 
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Count the Control Points: Let n be the number of control points. The
total number of knots required is n+k+1

Choose the Knot Values:

Uniform Knots: Space the knots evenly over the domain.

Non-Uniform Knots: Place knots based on the distribution of data
points or specific requirements.

Clamped/Open Knots: Repeat the first and last knots k times for a
degree k B-spline.

What are B-spline control points?

Control points are the key components in defining the shape and properties
of a B-spline curve. They act as reference points that influence the curve, but
the curve does not necessarily pass through them. Here is an explanation of
control points, their role, and how they interact with B-splines.

Control Points Explained

Definition

Control points are a set of points that determine the shape of the B-spline
curve. Each control point has a coordinate in the space in which the curve is
defined, typically denoted as  in 2D or  .

Role in B-Splines

Influence on Curve Shape: The position of each control point affects the
shape of the B-spline curve. The curve is “pulled” towards each control
point but does not necessarily pass through it, allowing for smooth and
flexible shapes.

• 

• 

• 

• 

• 

Pi=(xi,yi)P_i = (x_i, y_i)P =i (x , y )i i Pi=(xi,yi,zi) in 3DP_i = (x_i, y_i, z_i) \text{ in 3D}P =i (x , y , z ) in 3Di i i

• 
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Local Control: Moving a single control point affects only a portion of the
B-spline curve, providing local control over the curve’s shape. This
property is useful for fine-tuning specific segments without altering the
entire curve.

Weighted Influence: Each control point has an associated basis function
that defines its influence over the curve. The combination of these basis
functions, determined by the knot sequence and degree of the spline,
forms the final shape of the curve.

Mathematical Representation

A B-spline curve of degree k with n control points is defined as:

Where:

C(t) is the B-spline curve.

 are the B-spline basis functions of degree k.

 are the control points.

Example: Cubic B-Spline with Control Points

Let’s consider a cubic B-spline (k = 3) with four control points:

Control Points:

• 

• 

C(t)=∑i=0nNi,k(t)PiC(t) = \sum_{i=0}^{n} N_{i,k}(t) P_iC(t) = N (t)P∑i=0
n

i,k i

• 

• 
Ni,k(t)N_{i,k}(t)N (t)i,k

• 
PiP_iPi

P0=(0,
0)P_0 = (0, 0)
P =0 (0, 0)

P1=(1,
2)P_1 = (1, 2)
P =1 (1, 2)
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Knot Sequence:

B-Spline Basis Functions for Cubic B-Spline (k = 3):

For the interval [0, 1]:

The B-spline curve C(t) is then given by:

By substituting the values of the control points and the basis functions, you
can compute the specific points on the B-spline curve.

Example: Cubic B-Spline with 4 Control Points

Degree k=3

Number of Control Points n=4

Total Number of Knots:

P2=(2,
2)P_2 = (2, 2)
P =2 (2, 2)

P3=(3,
0)P_3 = (3, 0)
P =3 (3, 0)

t=[0,
0,
0,
1,
2,
3,
3,
3]t = [0, 0, 0, 1, 2, 3, 3, 3]

t = [0, 0, 0, 1, 2, 3, 3, 3]

N0,
3(t)=(1−t)36N_{0,3}(t) = \frac{(1-t)^3}{6}
N (t) =0,3 6

(1−t)3

N1,
3(t)=3t3−6t2+46N_{1,3}(t) = \frac{3t^3 - 6t^2 + 4}{6}
N (t) =1,3 6

3t −6t +43 2

N2,
3(t)=−3t3+3t2+3t+16N_{2,3}(t) = \frac{-3t^3 + 3t^2 + 3t + 1}{6}
N (t) =2,3 6

−3t +3t +3t+13 2

N3,
3(t)=t36N_{3,3}(t) = \frac{t^3}{6}
N (t) =3,3 6

t3

C(t)=N0,
3(t)P0+N1,
3(t)P1+N2,
3(t)P2+N3,
3(t)P3C(t) = N_{0,3}(t) P_0 + N_{1,3}(t) P_1 + N_{2,3}(t) P_2 + N_{3,3}(t) P_3

C(t) = N (t)P +0,3 0 N (t)P +1,3 1 N (t)P +2,3 2 N (t)P3,3 3

T
o
Total Knots = n + k + 1 = 4 + 3 + 1 = 8
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Uniform Knot Sequence:

Clamped/Open Knot Sequence:

Summary

Uniform Knots: Evenly spaced, simple to implement.

Non-Uniform Knots: Irregularly spaced, more flexible.

Clamped/Open Knots: Repeated first and last knots for boundary
constraints.

The choice of knot values affects the shape and flexibility of the B-spline.
Uniform knots are simpler but less flexible, while non-uniform and clamped
knots provide more control over the spline’s shape.

B-Splines

Example 1:

Input:

Consider the knots  and we want to construct a B-spline of
degree 2.

Steps:

Define Zeroth-Degree B-Splines:

t=[0,
1,
2,
3,
4,
5,
6,
7]t = [0, 1, 2, 3, 4, 5, 6, 7]

t = [0, 1, 2, 3, 4, 5, 6, 7]

t=[0,
0,
0,
0,
1,
2,
2,
2,
2]t = [0, 0, 0, 0, 1, 2, 2, 2, 2]

t = [0, 0, 0, 0, 1, 2, 2, 2, 2]

• 

• 

• 

t=[0,
1,
2,
3,
4,
5]t = [0, 1, 2, 3, 4, 5]

t = [0, 1, 2, 3, 4, 5]

B00(t)=1if0≤t<1else0B_0^0(t) = 1 \quad \text{if} \quad 0 \leq t < 1 \quad \text{else} \quad 0B (t) =0
0 1 if 0 ≤ t < 1 else 0
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and so on

First-Degree B-Splines:

and so on

Second-Degree B-Splines:

and so on

Output:

The B-splines of degree 2 constructed for the given knots.

Example 2:

Input:

Consider the knots  and we want to construct a B-spline of
degree 3.

Steps:

B10(t)=1if1≤t<2else0B_1^0(t) = 1 \quad \text{if} \quad 1 \leq t < 2 \quad \text{else} \quad 0B (t) =1
0 1 if 1 ≤ t < 2 else 0

B01(t)=(t−0)/
(1−0)⋅B00(t)
+
(1−t)/
(1−0)⋅B10(t)B_0^1(t) = (t - 0) / (1 - 0) \cdot B_0^0(t) + (1 - t) / (1 - 0) \cdot B_1^0(t)

B (t) =0
1 (t − 0)/(1 − 0) ⋅ B (t) +0

0 (1 − t)/(1 − 0) ⋅ B (t)1
0

B11(t)=(t−1)/
(2−1)⋅B10(t)
+
(2−t)/
(2−1)⋅B20(t)B_1^1(t) = (t - 1) / (2 - 1) \cdot B_1^0(t) + (2 - t) / (2 - 1) \cdot B_2^0(t)

B (t) =1
1 (t − 1)/(2 − 1) ⋅ B (t) +1

0 (2 − t)/(2 − 1) ⋅ B (t)2
0

B02(t)=(t−0)/
(2−0)⋅B01(t)
+
(2−t)/
(2−0)⋅B11(t)B_0^2(t) = (t - 0) / (2 - 0) \cdot B_0^1(t) + (2 - t) / (2 - 0) \cdot B_1^1(t)

B (t) =0
2 (t − 0)/(2 − 0) ⋅ B (t) +0

1 (2 − t)/(2 − 0) ⋅ B (t)1
1

B12(t)=(t−1)/
(3−1)⋅B11(t)
+
(3−t)/
(3−1)⋅B21(t)B_1^2(t) = (t - 1) / (3 - 1) \cdot B_1^1(t) + (3 - t) / (3 - 1) \cdot B_2^1(t)

B (t) =1
2 (t − 1)/(3 − 1) ⋅ B (t) +1

1 (3 − t)/(3 − 1) ⋅ B (t)2
1

t=[0,
1,
2,
3,
4]t = [0, 1, 2, 3, 4]

t = [0, 1, 2, 3, 4]
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Define Zeroth-Degree B-Splines:

and so on

First-Degree B-Splines:

and so on

Second-Degree B-Splines:

and so on

Third-Degree B-Splines:

and so on

Output:

B00(t)=1if0≤t<1else0B_0^0(t) = 1 \quad \text{if} \quad 0 \leq t < 1 \quad \text{else} \quad 0B (t) =0
0 1 if 0 ≤ t < 1 else 0

B10(t)=1if1≤t<2else0B_1^0(t) = 1 \quad \text{if} \quad 1 \leq t < 2 \quad \text{else} \quad 0B (t) =1
0 1 if 1 ≤ t < 2 else 0

B01(t)=(t−0)/
(1−0)⋅B00(t)
+
(1−t)/
(1−0)⋅B10(t)B_0^1(t) = (t - 0) / (1 - 0) \cdot B_0^0(t) + (1 - t) / (1 - 0) \cdot B_1^0(t)

B (t) =0
1 (t − 0)/(1 − 0) ⋅ B (t) +0

0 (1 − t)/(1 − 0) ⋅ B (t)1
0

B11(t)=(t−1)/
(2−1)⋅B10(t)
+
(2−t)/
(2−1)⋅B20(t)B_1^1(t) = (t - 1) / (2 - 1) \cdot B_1^0(t) + (2 - t) / (2 - 1) \cdot B_2^0(t)

B (t) =1
1 (t − 1)/(2 − 1) ⋅ B (t) +1

0 (2 − t)/(2 − 1) ⋅ B (t)2
0

B02(t)=(t−0)/
(2−0)⋅B01(t)
+
(2−t)/
(2−0)⋅B11(t)B_0^2(t) = (t - 0) / (2 - 0) \cdot B_0^1(t) + (2 - t) / (2 - 0) \cdot B_1^1(t)

B (t) =0
2 (t − 0)/(2 − 0) ⋅ B (t) +0

1 (2 − t)/(2 − 0) ⋅ B (t)1
1

B12(t)=(t−1)/
(3−1)⋅B11(t)
+
(3−t)/
(3−1)⋅B21(t)B_1^2(t) = (t - 1) / (3 - 1) \cdot B_1^1(t) + (3 - t) / (3 - 1) \cdot B_2^1(t)

B (t) =1
2 (t − 1)/(3 − 1) ⋅ B (t) +1

1 (3 − t)/(3 − 1) ⋅ B (t)2
1

B03(t)=(t−0)/
(3−0)⋅B02(t)
+
(3−t)/
(3−0)⋅B12(t)B_0^3(t) = (t - 0) / (3 - 0) \cdot B_0^2(t) + (3 - t) / (3 - 0) \cdot B_1^2(t)

B (t) =0
3 (t − 0)/(3 − 0) ⋅ B (t) +0

2 (3 − t)/(3 − 0) ⋅ B (t)1
2

B13(t)=(t−1)/
(4−1)⋅B12(t)
+
(4−t)/
(4−1)⋅B22(t)B_1^3(t) = (t - 1) / (4 - 1) \cdot B_1^2(t) + (4 - t) / (4 - 1) \cdot B_2^2(t)

B (t) =1
3 (t − 1)/(4 − 1) ⋅ B (t) +1

2 (4 − t)/(4 − 1) ⋅ B (t)2
2

AI Weekly
Report

Kolmogorov-Arnold Neural Networks (KANNs): A Mathematical Approach
to Neural Network Design

13

https://weeklyreport.ai
https://weeklyreport.ai


The B-splines of degree 3 constructed for the given knots.

Diagram 1. A visual example of B-splines

Kolmogorov-Arnold Neural Networks (KANNs)

Kolmogorov-Arnold Neural Networks (KANNs) are a class of neural networks
inspired by the Kolmogorov-Arnold representation theorem. This theorem
states that any multivariate continuous function can be represented as a
superposition of continuous functions of one variable and addition. KANNs
utilize this theoretical foundation along with practical function
approximation methods like B-splines to create powerful neural network
models.
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Structure of KANNs

Input Layer: Contains (n) nodes corresponding to the (n) input variables.

Hidden Layers: Perform transformations using functions (  ). These layers
can be implemented using B-splines to approximate these functions.

Output Layer: Combines the outputs of the hidden layers using functions
(  ), again using B-splines for smooth approximation.

Working of KANNs

Transformation by Hidden Layers: Each hidden layer transforms the input
variables through functions (  ), which can be represented by B-
splines:

Combination by Output Layer: The output layer applies functions (  ) to
these kannte representations and sums them up to produce the final output:

Example of KANN

Let’s consider a simple example where we have a 2-dimensional input vector
(  ) and we want to approximate a function (  ).

Input Layer: Two input nodes for (  ) and (  ).

Hidden Layer Transformation:

Suppose we have 3 hidden nodes, and each node uses a B-spline to transform
the inputs:

ϕij\phi_{ij}ϕij

ψi\psi_iψi

ϕij(xj)
\
p
h
i
_
{
i
j
}
(
x
_
j
)

ϕ (x )ij j

hi=∑j=1nϕij(xj)h_i = \sum_{j=1}^n \phi_{ij}(x_j)h =i ϕ (x )∑j=1
n

ij j

ψi\psi_iψi

f(x1,x2,…,xn)=∑i=12n+1ψi(hi)f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{2n+1} \psi_i(h_i)f(x ,x , … ,x ) =1 2 n ψ (h )∑i=1
2n+1

i i

(x1,x2)
(
x
_
1
,
x
_
2
)

(x ,x )1 2 f(x1,x2)f(x_1, x_2)f(x ,x )1 2

x1x_1x1 x2x_2x2

h1=ϕ11(x1)
+ϕ12(x2)h_1 = \phi_{11}(x_1) + \phi_{12}(x_2)
h =1 ϕ (x ) +11 1 ϕ (x )12 2

AI Weekly
Report

Kolmogorov-Arnold Neural Networks (KANNs): A Mathematical Approach
to Neural Network Design

15

https://weeklyreport.ai
https://weeklyreport.ai


Here, each (  ) is a B-spline function approximating a univariate function
of (  ) or (  ).

Output Layer Combination:

The output layer combines these hidden representations using additional B-
spline functions:

Handling High-Dimensional Input with KANNs

Kolmogorov-Arnold Neural Networks (KANNs) have a theoretical foundation
that allows them to approximate any continuous multivariate function,
which includes functions with a large number of input variables. However,
the practical implementation and efficiency of KANNs in handling high-
dimensional inputs depend on several factors.

Theoretical Capability

The Kolmogorov-Arnold representation theorem ensures that any
continuous function of ( n ) variables can be decomposed into sums of
continuous functions of one variable. This means that, in theory, KANNs can
handle functions with a large number of input variables.

Practical Considerations

While the theoretical foundation is robust, practical challenges arise when
dealing with high-dimensional inputs:

Number of Hidden Units: According to the theorem, the number of hidden
units required is typically ( 2n + 1 ), where ( n ) is the number of input
variables. For high-dimensional inputs, this results in a large number of
hidden units, which can increase the complexity of the network.

h2=ϕ21(x1)
+ϕ22(x2)h_2 = \phi_{21}(x_1) + \phi_{22}(x_2)
h =2 ϕ (x ) +21 1 ϕ (x )22 2

h3=ϕ31(x1)
+ϕ32(x2)h_3 = \phi_{31}(x_1) + \phi_{32}(x_2)
h =3 ϕ (x ) +31 1 ϕ (x )32 2
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Parameter Explosion: As the number of input variables increases, the number
of parameters (e.g., B-spline coefficients) in the network also increases. This
can lead to high memory requirements and longer training times.

Training Complexity: Training a network with many parameters requires a
large amount of data to avoid overfitting and to ensure that the model
generalizes well. High-dimensional data often requires sophisticated
techniques for efficient training.

Computational Resources: Handling high-dimensional inputs necessitates
significant computational resources, both in terms of processing power and
memory.

Mitigation Strategies

To address these challenges, several strategies can be employed:

Dimensionality Reduction: Techniques such as Principal Component Analysis
(PCA), t-SNE, or autoencoders can be used to reduce the dimensionality of
the input data before feeding it into the network.

Regularization: Regularization techniques such as L1/L2 regularization,
dropout, and weight sharing can help mitigate overfitting and manage the
complexity of the model.

Efficient Representations: Using more efficient representations of (  ) and
(  ) functions can reduce the number of parameters. For example, piecewise
linear functions or lower-degree B-splines might offer a trade-off between
complexity and approximation capability.

Parallel and Distributed Computing: Leveraging parallel and distributed
computing frameworks can help manage the computational load associated
with training large KANNs.

Sparse Representations: Employing sparse representations of the input data
can help reduce the effective dimensionality and improve computational
efficiency.

ϕij\phi_{ij}ϕij
ψi\psi_iψi
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Example with High-Dimensional Input

Suppose we have a function (f) with 100 input variables (  ).
According to the Kolmogorov-Arnold theorem, we would need at least (201)
hidden units:

Input Layer: 100 input nodes for (  ).

Hidden Layer Transformation:

Each hidden unit performs a transformation using B-splines:

Here, each (  ) is a B-spline function approximating a univariate function
of (  ).

Output Layer Combination:

The output layer combines these hidden representations using additional B-
spline functions:

While KANNs have the theoretical capability to handle high-dimensional
inputs, practical implementations must address the challenges of parameter
explosion, training complexity, and computational resource requirements.
By employing dimensionality reduction, regularization, efficient
representations, and leveraging advanced computational techniques, KANNs
can be made more practical for high-dimensional function approximation
tasks.

Diagram 2. A comparison of MLPs vs. KANNs
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Diagram 3. A pictorial representation of KANNS. Note the input vector
members being fed into activation functions rather than assigned static
weights.
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B-Splines and KANNs

B-splines (Basis splines) are often used in conjunction with Kernel-based
Artificial Neural Networks (KANNs) due to their advantageous properties for
approximating complex functions and improving the learning process. Here
are some reasons and advantages for using B-splines with KANNs:

Smoothness and Flexibility

Reason:

B-splines provide a smooth and flexible way to approximate complex,
non-linear functions. They are defined piecewise by polynomial
functions, which can be easily adjusted to fit various shapes and data
trends.

Advantage:

This smoothness ensures that the approximated functions are
continuous and differentiable, which is crucial for tasks that require
gradient-based optimization methods, such as backpropagation in
neural networks.

Local Control

Reason:

B-splines have local support, meaning that adjusting a control point
affects the function only in a local region around that point.

Advantage:

This property is beneficial in neural networks because it allows for
localized adjustments without impacting the entire function, leading to

• 

• 

• 

• 

• 

AI Weekly
Report

Kolmogorov-Arnold Neural Networks (KANNs): A Mathematical Approach
to Neural Network Design

20

https://weeklyreport.ai
https://weeklyreport.ai


more stable and efficient learning processes. It also makes the model
more interpretable and easier to debug.

Reduced Overfitting

Reason:

B-splines can be used to construct smooth approximations with fewer
parameters compared to other basis functions.

Advantage:

By using fewer parameters to achieve a smooth fit, B-splines help in
reducing the risk of overfitting, which is particularly important in
machine learning where overfitting to the training data can lead to poor
generalization on unseen data.

Computational Efficiency

Reason:

The piecewise polynomial nature of B-splines allows for efficient
computation of function values and their derivatives.

Advantage:

This efficiency is crucial for training neural networks, especially for
large-scale problems or when using deep architectures, as it reduces the
computational burden and speeds up the training process.

Robustness to Noise

Reason:

B-splines can smooth out noise in the data due to their inherent
smoothing properties.

• 

• 

• 

• 

• 
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Advantage:

This robustness makes KANNs with B-splines more effective in handling
real-world data, which is often noisy and imperfect, leading to better
performance and more reliable models.

Versatility in High Dimensions

Reason:

B-splines can be extended to higher dimensions using tensor product
splines.

Advantage:

This versatility allows KANNs to handle multi-dimensional data more
effectively, making them suitable for complex tasks such as image
processing, time-series analysis, and other applications involving high-
dimensional inputs.

Sparse Representations in KANNs

Sparse representations of input data can significantly improve the
computational efficiency of Kolmogorov-Arnold Neural Networks (KANNs)
by reducing the effective dimensionality and the amount of computation
required. Here’s how they can help:

Understanding Sparse Representations

A sparse representation means that most of the elements in the input data
vector are zero. This can happen naturally in many applications, such as text
data (bag-of-words models), image data (where most pixels might be
background), or sensor data (where only a few sensors are active at any given
time).

• 

• 

• 
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Benefits of Sparse Representations

Reduced Computational Load: When many input features are zero, the
network can skip computations involving those features, saving time and
resources.

Memory Efficiency: Sparse data can be stored more efficiently using data
structures like sparse matrices, which only store non-zero elements and
their indices.

Faster Training: With fewer active features, the number of parameters that
need to be updated during training is reduced, leading to faster convergence.

Regularization Effect: Sparsity can act as a form of regularization, potentially
improving the generalization of the model by reducing the risk of overfitting.

Implementing Sparse Representations in KANNs

Here’s how sparse representations can be leveraged in KANNs:

Sparse Input Layer: Use data structures optimized for sparse data, such as
sparse matrices or tensors. This ensures that only non-zero elements
contribute to the computations.

Efficient Computation in Hidden Layers:

Sparse Matrix Operations: Use libraries and frameworks that support sparse
matrix operations. In many machine learning libraries, operations on sparse
matrices are optimized to skip zero elements.

Activation Functions: Ensure that the activation functions and B-spline
transformations in the hidden layers are implemented to handle sparse
inputs efficiently.

Sparse B-Spline Representations: If the functions  and  can be
represented using sparse B-splines, this can further reduce the number of
parameters and computations. Sparse B-splines only store and compute the
non-zero coefficients.

ϕij\phi_{ij}ϕij ψi\psi_iψi
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Training with Sparse Data: When training with sparse data, gradient updates
can be computed more efficiently by focusing only on the non-zero elements.
This reduces the number of weight updates needed per training iteration.

Example of Sparse Computation

Consider a KANN with an input vector (x) of dimension 1000, where only 10
elements are non-zero. The hidden layers use B-splines to transform the
inputs, and the output layer combines these transformations.

Sparse Input Representation:

import numpy as np

from scipy.sparse import csr_matrix

# Sparse input vector

x_sparse = csr_matrix((data, indices, indptr), shape=(1, 100

0))

Sparse Matrix Operations:

# Sparse matrix multiplication with weights

hidden_layer_output = x_sparse.dot(weight_matrix)

# Sparse input vector

x_sparse = csr_matrix((data, indices, indptr), shape=(1, 100

0))

Sparse B-Spline Transformation:

# Assuming B-spline transformations are implemented to 

handle sparse inputs

transformed_output =

sparse_b_spline_transform(hidden_layer_output)

# Sparse Gradient Updates:

# Compute gradients only for non-zero elements

gradients = compute_gradients(transformed_output, target)
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Sparse representations can greatly enhance the computational efficiency of
KANNs by reducing the effective dimensionality of the input data and
focusing computational resources on the relevant (non-zero) elements. By
integrating sparse data structures and optimized operations, KANNs can
handle high-dimensional inputs more efficiently, making them more
practical for real-world applications involving large and sparse datasets.

Implementing Sparse Representations to Reduce Overfitting

To effectively leverage sparse representations for reducing overfitting in
KANNs, consider the following strategies:

Sparse Input Handling:

Use data structures and libraries optimized for sparse data (e.g., 
scipy.sparse  in Python) to efficiently handle and process sparse inputs.

Ensure the input layer of the KANN is designed to work with sparse data,
skipping computations for zero elements.

Regularization Techniques:

Combine sparse representations with traditional regularization methods like
L1 and L2 regularization to further constrain the model complexity.

Use dropout, which randomly zeros out parts of the input data or kannte
representations during training, to promote sparsity and reduce overfitting.

Sparse B-Splines:

Implement B-spline functions that can operate on sparse inputs, focusing on
non-zero coefficients to maintain sparsity throughout the network.

Data Preprocessing:

Apply techniques such as feature selection or dimensionality reduction to
preprocess the data, ensuring that only the most relevant features are
retained and represented sparsely.
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Example Workflow

Here’s an example of how you might implement these strategies in practice:

Sparse Data Representation:

from scipy.sparse import csr_matrix

from sklearn.linear_model import Lasso

import tensorflow as tf

# Create a sparse matrix from input data

x_sparse = csr_matrix((data, indices, indptr), shape=(n_samp

les, n_features))

# Perform sparse matrix multiplication

hidden_layer_output = x_sparse.dot(weight_matrix)

# Perform sparse matrix multiplication

hidden_layer_output = x_sparse.dot(weight_matrix)

# Apply L1 regularization to promote sparsity

lasso = Lasso(alpha=0.1)

lasso.fit(x_sparse, y)

# Apply dropout to the hidden layer

dropout_layer = tf.keras.layers.Dropout(rate=0.5)

hidden_layer_output = dropout_layer(hidden_layer_output, tra

ining=True)

By incorporating these techniques, you can leverage sparse representations
to build more robust KANNs that generalize better and are less prone to
overfitting.
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Appendix A: Splines

A spline is a mathematical function used for interpolation or smoothing of
data points. It is a piecewise-defined polynomial function that ensures
smoothness at the places where the polynomial pieces connect, known as
“knots”. Splines are widely used in various fields such as computer graphics,
data fitting, and numerical analysis due to their flexibility and ability to
create smooth curves through a given set of points.

Key Characteristics of Splines

Piecewise Polynomials: Splines are composed of several polynomial
segments. Each segment is defined over a specific interval, and the collection
of these segments forms the entire spline function.

Knots: The points where the polynomial segments meet are called knots. The
placement and number of knots can significantly affect the shape and
properties of the spline.

Continuity: Splines are typically designed to be continuous up to a certain
degree of derivatives at the knots. For example, a cubic spline not only
ensures the function itself is continuous but also its first and second
derivatives are continuous at each knot.

Degree: The degree of the polynomial pieces can vary. Common types of
splines include:

Linear splines: Piecewise linear functions.

Quadratic splines: Piecewise quadratic functions.

Cubic splines: Piecewise cubic functions, often used due to their balance
between flexibility and computational efficiency.

Types of Splines

Linear Splines: These are the simplest form, where each segment is a linear
function. They are not smooth as they have discontinuities in their first
derivatives at the knots.
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Quadratic Splines: These use quadratic polynomials for each segment. They
ensure continuity of the function and its first derivative.

Cubic Splines: These are the most commonly used splines. They use cubic
polynomials for each segment, ensuring continuity of the function and its
first and second derivatives. Cubic splines are widely used because they
provide a good balance between smoothness and computational simplicity.

B-Splines: These are a generalization of splines that use basis functions. B-
splines provide local control over the shape of the curve, meaning that
changing a control point affects only a local portion of the spline.

NURBS (Non-Uniform Rational B-Splines): These extend B-splines by
adding weights to the control points, allowing for the representation of more
complex shapes, including conic sections and freeform surfaces.

Applications of Splines

Data Fitting: Splines are used to fit smooth curves to a set of data points. This
is useful in statistics, machine learning, and other fields where modeling and
analyzing data trends are essential.

Computer Graphics: In graphics and CAD (Computer-Aided Design), splines
are used to design smooth and flexible curves and surfaces. B-splines and
NURBS are particularly popular in these applications.

Numerical Analysis: Splines are used in numerical solutions of differential
equations, where they can approximate solutions with high accuracy.

Diagram 4. Example of a spline function with single knots at 1/3 and 2/3.
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Appendix B. Differences between generic splines
and B-splines.

Splines and B-splines are both used in numerical analysis and computer
graphics to create smooth curves through a set of points. However, they have
distinct differences in their definitions, properties, and applications. Below,
we explore these differences in detail.

Splines

Splines refer to a broad category of piecewise polynomial functions that can
be used to approximate or interpolate data points. The term “spline”
originally comes from the flexible strips used by draftsmen to draw smooth
curves through a set of points. In mathematics and computer science, splines
are defined more formally as follows:

Piecewise Polynomial: Splines are composed of polynomial segments joined
at certain points called “knots”.

Continuity: Splines typically have a specified degree of smoothness at the
knots. For example, a cubic spline (made up of third-degree polynomials) is
usually required to have continuous first and second derivatives at the knots.
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Types: There are various types of splines, including linear, quadratic, and
cubic splines, depending on the degree of the polynomial.

B-splines

B-splines (Basis splines) are a specific type of spline with additional
properties that make them particularly useful in computer graphics and
numerical analysis:

Basis Functions: B-splines are defined by a set of basis functions, which are
piecewise polynomials of a given degree. These basis functions have local
support, meaning they are non-zero over only a small portion of the domain.

Local Control: Because each basis function affects only a limited portion of
the curve, B-splines offer local control over the shape of the spline.
Modifying a control point influences only the nearby segments of the curve.

Knot Vector: B-splines require a knot vector, which is a non-decreasing
sequence of parameter values that determine where and how the basis
functions are defined. The repetition of knots can affect the continuity and
smoothness at those points.

Types of B-splines: By adjusting the knot vector and the degree of the
polynomials, you can create various types of B-splines, such as uniform B-
splines (with evenly spaced knots) or non-uniform B-splines.

NURBS: Non-Uniform Rational B-Splines (NURBS) are an extension of B-
splines that include weights for each control point, allowing for the
representation of more complex shapes, including conic sections.

Key Differences

General vs. Specific: Splines are a general concept, while B-splines are a
specific type of spline with well-defined basis functions and properties.

Basis Functions: B-splines are constructed using basis functions, which
provide local control over the spline. General splines do not necessarily have
this property.
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Local Control: B-splines offer local control due to their basis functions with
local support. Adjusting a control point in a B-spline affects only a portion of
the curve, whereas in general splines, adjusting a control point might
influence the entire curve.

Knot Vector: B-splines require a knot vector to define the piecewise
polynomial segments, whereas general splines might not explicitly use a
knot vector.

Applications

Splines: General splines are used in interpolation, approximation, and
smoothing of data. Applications include numerical analysis, data fitting, and
computer graphics.

B-splines: B-splines are widely used in computer-aided design (CAD),
computer graphics, and animation for creating smooth and flexible shapes.
They are also used in numerical solutions of differential equations and other
areas where local control of the spline is advantageous.

Conclusion

In summary, while both splines and B-splines are used to create smooth
curves, B-splines provide additional structure and properties that make
them particularly useful for applications requiring local control and
flexibility. Understanding these differences helps in choosing the appropriate
type of spline for a given application.
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