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Introduction

Hamiltonian and Lagrange neural networks represent a
sophisticated integration of classical mechanics with modern
neural network architectures. These frameworks are particularly
useful for modeling physical systems and dynamical processes,
leveraging the principles of Hamiltonian and Lagrangian
mechanics to improve the learning capabilities and
interpretability of neural networks.

You can view the Jupyter Notebook for this briefing
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Primer on Hamiltonian and Lagrangian Mechanics

Hamiltonian Mechanics

Hamiltonian mechanics is a reformulation of classical mechanics introduced
by William Hamilton in the 19th century. It provides a powerful and elegant
way to describe the evolution of physical systems over time, especially those
with conserved quantities like energy, momentum, and angular momentum.

Why Hamiltonian Equations are Useful:

Conservation Laws: They inherently conserve energy, momentum, and
other physical quantities.

Symplectic Structure: They preserve the geometric structure of phase
space, ensuring accurate long-term predictions.

Applicability: They are versatile, applicable to a wide range of physical
systems, including those with complex interactions.

Predictive Power: They offer precise predictions of system behavior over
time

Hamiltonian Function

The Hamiltonian  is a function of generalized coordinates  and conjugate
momenta  , often representing the total energy of the system:

where  is the kinetic energy and  is the potential energy. Physicists
use the Hamiltonian function because it provides a comprehensive
description of the system’s energy, combining both kinetic and potential
components.

• 

• 

• 

• 
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H(q,p)=T(p)
+V(q)H(q,p) = T(p) + V(q)
H(q, p) = T (p) + V (q)

T(p)T(p)T (p) V(q)V(q)V (q)
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Hamilton’s Equation

The dynamics of the system are described by Hamilton’s equations, which
are first-order differential equations:

These equations describe how the state of the system evolves over time.
Physicists use Hamilton’s equations because they offer a systematic way to
analyze the motion of a system, particularly when dealing with complex
interactions and multiple degrees of freedom.

Hamiltonian equations are used in a number of areas, including:

Celestial Mechanics: Used in astrophysics to predict the orbits of planets,
stars, and satellites.

Quantum Mechanics: Fundamental in quantum mechanics to describe
the total energy of a quantum system.

Control Systems: Applied in engineering to design and analyze control
systems that need to conserve energy.

Lagrangian Mechanics

Lagrangian mechanics, another formulation of classical mechanics, uses the
Lagrangian function to describe the dynamics of a system in terms of
generalized coordinates  and generalized velocities  .

This approach is particularly powerful for systems with constraints and
provides a framework for deriving the equations of motion without directly
solving Newton’s second law.

Lagrangian Function

The Lagrangian  is defined as the difference between the kinetic and
potential energy of the system:

q˙=∂H∂p,p˙=−∂H∂q\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}=q̇ , =∂p
∂H ṗ − ∂q

∂H

• 

• 

• 

qqq q˙\dot{q}q̇

LLL
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Lagrangian equations are fundamental in classical mechanics and provide an
alternative formulation to Newton’s laws. They offer several advantages:

Simplification of Complex Systems: Lagrangian mechanics often
simplifies the analysis of systems with constraints (e.g., pendulums,
robotic arms).

Generalized Coordinates: It uses generalized coordinates, making it
easier to describe the system’s configuration.

Derivation of Equations of Motion: The Euler-Lagrange equations
derived from the Lagrangian function simplify obtaining the equations of
motion for complex systems.

Euler-Lagrange Equations

The Euler-Lagrange equations are a set of second-order differential
equations that provide the equations of motion for a system described by a
Lagrangian function. They are derived from the principle of least action,
which states that the actual path taken by a system is the one that minimizes
the action S, defined as the integral of the Lagrangian L over time.

For a system with generalized coordinates q and generalized velocities  , the
Euler-Lagrange equation is:

These equations of motion are derived from the Euler-Lagrange equations,
which are second-order differential equations. These equations describe how
the generalized coordinates evolve over time.

The differences from the Lagrangian Equations are:

Lagrangian: The Lagrangian L is a function that combines the kinetic
energy T and potential energy V of the system: L = T - V.

L(q,q˙)=T(q˙)
−V(q)L(q, \dot{q}) = T(\dot{q}) - V(q)
L(q, ) =q̇ T ( ) −q̇ V (q)

• 

• 

• 

q˙\dot{q}q̇

ddt(∂L∂q˙)
−∂L∂q=0\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0

−
dt
d ( ∂q̇

∂L) =∂q
∂L 0

• 
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Euler-Lagrange Equations: These are derived from the Lagrangian and
provide the equations of motion for the system.

Advantages:

Handles Constraints: The Euler-Lagrange equations are particularly
powerful for dealing with systems that have constraints, such as
pendulums or robotic arms.

Generalized Coordinates: They allow the use of generalized coordinates,
which can simplify the analysis of complex systems.

Example:

For a simple pendulum, the Lagrangian is:

The Euler-Lagrange equation for this system is:

This provides the equation of motion for the pendulum in terms of the angle 
 .

Real-World Use Cases:

Robotics: Used to model and control robotic systems, ensuring precise
movements.

Biomechanics: Helps in understanding human movement dynamics and
designing prosthetics.

Mechanical Engineering: Aids in analyzing and designing mechanical
systems with constraints, such as linkages and suspension systems.

• 

• 

• 

L=T−V=12ml2θ˙2−mgl(1−cosθ)L = T - V = \frac{1}{2} ml^2 \dot{\theta}^2 - mgl(1 - \cos \theta)L = T − V = ml −2
1 2θ̇2 mgl(1 − cos θ)

ddt(ml2θ˙)
+mglsinθ=0\frac{d}{dt} (ml^2 \dot{\theta}) + mgl \sin \theta = 0

(ml ) +
dt
d 2θ̇ mgl sin θ = 0

θ\thetaθ

• 

• 

• 
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Invariants in Hamiltonian and Lagrangian Mechanics

Invariants are properties or quantities in a system that remain constant over
time, no matter how the system evolves. Think of them as fixed landmarks in
a changing landscape.

Why Invariants Matter:

Energy Conservation: Just like how the total amount of water in a closed
system stays the same, the total energy in a physical system (kinetic +
potential) remains constant.

Momentum Conservation: Imagine you’re in a smooth ice rink; if you
push off and glide, your momentum (mass times velocity) remains
unchanged until you hit something.

Angular Momentum: If you’re spinning in a swivel chair with your arms
out and then pull them in, you spin faster. This is because your angular
momentum is conserved.

In the context of Hamiltonian and Lagrangian mechanics, these invariants
help ensure that the models we use to describe physical systems are accurate
and stable over time.

Hamiltonian Neural Networks (HNNs)

Overview

Hamiltonian neural networks (HNNs) incorporate the principles of
Hamiltonian mechanics into neural network architectures to model the
dynamics of physical systems. By construction, these models learn
conservation laws from data, leading to better performance in physics-based
problems.

• 

• 

• 
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Learning the Hamiltonian Function

HNNs parameterize the Hamiltonian function  using neural network
parameters and learn it directly from data. The learned Hamiltonian is used
to predict the system’s evolution by adhering to Hamilton’s equations.

Incorporating Invariants

Energy Conservation: By learning a Hamiltonian function that remains
invariant over time, HNNs ensure that the total energy of the system is
conserved.

Symplectic Structure: The loss function in HNNs is designed to respect
the symplectic structure, preserving the phase space volume and
ensuring accurate long-term predictions.

Zero Divergence Property

The HNN learns a vector field that has zero divergence. In simple terms,
when the Hamiltonian Neural Network (HNN) learns a vector field with zero
divergence, it means that there are no points in the system where things are
being added (sources) or removed (sinks). This property ensures that if we
move the system forward in time and then backward, we end up exactly
where we started. This makes the model very accurate and reliable over long
periods, as it faithfully preserves the system’s state without distortion.

Loss Function

The loss function ensures that the learned Hamiltonian respects the 
symplectic structure, minimizing the discrepancy between the predicted and
true dynamics.

In simple terms, a symplectic structure is a special way of organizing and
preserving the information about a system’s state over time. Imagine you
have a room full of balloons, each representing a possible state of the system.
A symplectic structure ensures that as the system evolves, the overall

H(q,p)H(q,p)H(q, p)

• 

• 
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arrangement and volume of the balloons don’t change, even though
individual balloons might move around. This helps in accurately predicting
the system’s behavior without losing or distorting any information.

The objective is to make the following terms go to zero:

Architecture

HNNs typically use a feedforward neural network to approximate the
Hamiltonian function. Inputs are the generalized coordinates  and momenta

 .

Figure 1. A contrast between a standard neural network and a Hamiltonian neural
network

In the above diagram we see that the Hamiltonian neural network evaluates
its parameters via data. Beause the Haniltonian equation conserves
quantities, it produces a much more robust and accurate prediction state.
(Ref. https://greydanus.github.io/2019/05/15/hamiltonian-nns/)

a
r
g
m
i
nθ∥dqdt−∂Hθ∂p∥2 + ∥dpdt+∂Hθ∂q∥2\operatorname*{argmin}_\theta \bigg \Vert \frac{d\mathbf{q}}{dt} - \frac{\partial \mathcal{H}_{\theta}}{\partial \mathbf{p}} \bigg \Vert^2 ~+~ \bigg \Vert \frac{d\mathbf{p}}{dt} + \frac{\partial \mathcal{H}_{\theta}}{\partial \mathbf{q}} \bigg \Vert^2

argmin −θ dt
dq + +∂p

∂Hθ

2

dt
dp

∂q
∂Hθ

2
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Applications:

Celestial Mechanics: Modeling planetary orbits and satellite dynamics.

Particle Physics: Simulating interactions at a subatomic level.

Control Systems: Designing systems that need to maintain energy
conservation over time.

Advantages Over Ordinary Deep Neural Networks

Preservation of Physical Laws: HNNs inherently preserve the
conservation laws (e.g., energy) of the systems they model, which is
crucial for long-term predictions.

Improved Generalization: By embedding physical principles into the
learning process, HNNs generalize better to unseen data, especially in
physical systems where these principles apply.

Enhanced Interpretability: The learned Hamiltonian function has a clear
physical meaning, making the model’s predictions more interpretable in
the context of the system’s dynamics.

Mass-Spring Example

The mass-spring system is a classic example in physics that illustrates how
Hamiltonian mechanics can be used to describe the dynamics of a simple
harmonic oscillator. Consider a mass  attached to a spring with spring
constant  . Note that a spring constant measures the stiffness of a spring, in
other words, how hard is it for the spring to compress.

The Hamiltonian for this system is given by:

where  represents the position of the mass and  represents the momentum.

The kinetic energy is  , and the potential energy stored in the spring is 
 .

Using Hamilton’s equations:

• 

• 

• 

• 

• 

• 
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H(q,p)=p22m+12kq2H(q, p) = \frac{p^2}{2m} + \frac{1}{2} k q^2H(q, p) = +2m
p2

kq2
1 2

qqq ppp
p22m\frac{p^2}{2m}
2m
p2

12kq2\frac{1}{2} k q^2kq2
1 2
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we can describe the time evolution of the position and momentum of the
mass. This system exhibits simple harmonic motion, where energy oscillates
between kinetic and potential forms but the total energy remains conserved.

Lagrange Neural Networks (LNNs)

Overview

Lagrange neural networks (LNNs) utilize the principles of Lagrangian
mechanics to model the dynamics of systems, particularly those with
constraints. These models learn the Lagrangian function directly from data
and use it to derive the equations of motion.

Learning the Lagrangian Function

LNNs parameterize the Lagrangian function  using neural network
parameters and learn it directly from data. The learned Lagrangian is used to
derive the system’s equations of motion through the Euler-Lagrange
equations.

Loss Function

The loss function ensures that the learned Lagrangian satisfies the Euler-
Lagrange equations, accurately modeling system dynamics:

The objective is to minimize the discrepancy between the predicted and true
dynamics.

q˙=∂H∂p=pm,p˙=−∂H∂q=−kq\dot{q} = \frac{\partial H}{\partial p} = \frac{p}{m}, \quad \dot{p} = -\frac{\partial H}{\partial q} = -kq=q̇ =∂p
∂H , =

m
p ṗ − =∂q

∂H −kq

L(q,q˙)L(q, \dot{q})L(q, )q̇

L=∥ddt(∂L∂q˙)
−∂L∂q∥2\mathcal{L} = \left\Vert \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} \right\Vert^2
L = −

dt
d ( ∂q̇

∂L) ∂q
∂L

2
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Architecture

LNNs typically use a feedforward neural network to approximate the
Lagrangian function. Inputs are the generalized coordinates  and velocities 

 .

Applications:

Robotics: Modeling and controlling robotic systems with complex
movements.

Biomechanics: Understanding and predicting human movement for
prosthetic design.

Mechanical Engineering: Analyzing systems with constraints, such as
linkages and suspension systems.

Advantages Over Ordinary Deep Neural Networks

Handling Constraints: LNNs naturally handle constraints within the
system, making them ideal for modeling mechanical systems with
complex interactions.

Preservation of Symmetries: By using the Lagrangian formulation, LNNs
preserve the inherent symmetries of the physical systems, leading to
more accurate and stable predictions.

Enhanced Physical Interpretability: The learned Lagrangian function
provides a direct physical interpretation of the system’s dynamics, which
is valuable for understanding and analyzing the model.

qqq
q˙\dot{q}q̇
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• 
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Figure 2. A comparison of Lagrangian Neural Networks vs. a standard Neural
Network

In figure 2, we see that, as with a Hamiltonian neural network, the
Lagrangian NN performs substantially better than a standard Deep Learning
NN. (Ref. https://astroautomata.com/paper/lagrangian-neural-networks/)

Integrating Hamiltonian and Lagrangian Mechanics with Neural
Networks

Hamiltonian Neural Networks:

HNNs use a neural network to approximate the Hamiltonian function,
ensuring that the network respects the symplectic structure of the system.
The loss function is designed to minimize the discrepancy between the
predicted and true dynamics, typically measured using Hamilton’s equations.

Training Process for Hamiltonian Neural Networks:

Define the Hamiltonian Function: The Hamiltonian function  is
parameterized as a neural network with parameters  .

• 
HHH

θ\thetaθ
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Compute Time Derivatives: Using Hamilton’s equations, compute the
time derivatives  and  .  represents the change of position over time
and  represents the change of momentum (i.e. the rate of change of
motion) changes over time.

Minimize Loss Function: The loss function is designed to penalize errors
in the predicted time derivatives:

Training Process for Lagrangian Neural Networks:

Define the Lagrangian Function: The Lagrangian function  is
parameterized as a neural network  with parameters  .

Compute Time Derivatives: Using the Euler-Lagrange equations,
compute the time derivatives.

Minimize Loss Function: The loss function ensures that the learned
Lagrangian satisfies the Euler-Lagrange equations, minimizing the
discrepancy between the predicted and true dynamics.

Comparative Analysis

Similarities:

Both HNNs and LNNs integrate classical mechanics principles into neural
networks.

They ensure that learned models respect fundamental physical laws,
leading to more accurate and interpretable results.

Both approaches can significantly improve the modeling of dynamical
systems, especially over long time periods.

• 

q˙\dot{q}q̇ p˙\dot{p}ṗ q˙\dot{q}q̇

p˙\dot{p}ṗ

• 
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dq + +∂p
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Differences:

HNNs focus on learning the Hamiltonian function, ideal for systems
where energy conservation is crucial.

LNNs focus on learning the Lagrangian function, advantageous for
systems with constraints or where the formulation in terms of
coordinates and velocities is more natural.

The mathematical formulations (Hamilton’s equations vs. Euler-
Lagrange equations) lead to different training and implementation
strategies.

Applications of Hamiltonian and Lagrangian Neural
Networks in Finance

Hamiltonian and Lagrangian neural networks (HNNs and LNNs) offer unique
advantages for modeling and predicting complex financial systems due to
their ability to capture dynamic behaviors and preserve structural
constraints.

Modeling Financial Systems

Dynamic Asset Pricing: HNNs and LNNs can accurately model the
intricate dynamics of asset prices by learning the underlying equations
governing market behavior. This ensures that key financial principles,
such as the conservation of capital, are maintained. This is especially
useful for modeling highly dynamic markets where traditional models
may fall short.

Derivatives Pricing: These models enhance the pricing of financial
derivatives by incorporating the complex, stochastic processes that drive
market behaviors. By doing so, they provide more accurate and reliable
pricing compared to traditional models like Black-Scholes.

• 

• 

• 

• 

• 
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Predictive Analysis

Market Trend Prediction: By leveraging conservation laws, HNNs and
LNNs provide more stable and accurate predictions of market trends.
This stability is crucial for making informed long-term investment
decisions, as it reduces the noise and error inherent in traditional
predictive models.

Volatility Forecasting: LNNs can effectively forecast market volatility by
modeling the constraints and interactions within financial markets. This
capability allows for better risk management and strategic planning,
especially in volatile market conditions.

Optimization

Portfolio Management: HNNs optimize portfolio allocations over time
by understanding the dynamic behavior of different assets. They ensure
optimal asset distribution by predicting how each asset will perform
under various market conditions, leading to maximized returns and
minimized risks.

Algorithmic Trading: These networks can significantly enhance
algorithmic trading strategies. By accurately predicting price movements
and optimizing trade execution, HNNs help traders maximize their
returns and exploit market inefficiencies.

Risk Management

Stress Testing: HNNs and LNNs can simulate various market conditions
and their impacts on portfolios. This simulation capability is vital for
stress testing and assessing how different scenarios might affect
financial stability. It helps in identifying potential vulnerabilities and
preparing appropriate risk mitigation strategies.

• 

• 

• 

• 

• 
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Credit Risk Modeling: These models can capture the dynamics of credit
risk factors, providing a deeper understanding of credit risks. This
understanding aids in making more informed decisions regarding
lending, borrowing, and other credit-related activities.

Example Applications

Option Pricing Models

Traditional models like Black-Scholes can be enhanced using HNNs to
incorporate more complex dynamics and constraints. This enhancement
leads to more accurate pricing of options and derivatives, reflecting a more
realistic market behavior.

Interest Rate Modeling

LNNs can model the evolution of interest rates, considering the constraints
and interactions within the financial system. This capability provides better
forecasts and strategies for managing interest rate risks, which is crucial for
financial institutions and investors alike.

Asset Allocation

By understanding the dynamics of asset prices and their interactions, HNNs
can optimize asset allocation in a portfolio. This optimization ensures better
returns while effectively managing risks, making it a powerful tool for
portfolio managers.

Hamiltonian and Lagrangian neural networks bring advanced modeling
capabilities to the financial sector, allowing for more accurate predictions,
better risk management, and optimized financial strategies. Their ability to
preserve inherent structures and constraints makes them particularly
valuable for long-term stability and accuracy in financial predictions and
optimizations. As research and technology progress, the applications of these
neural networks in finance are likely to expand, providing new tools for
analysts, traders, and risk managers to navigate the complexities of financial
markets.

• 
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Resources

Viewable Jupyter Notebook for this briefing• 

AI Weekly Report Hamiltonian and Lagrange Neural Networks 17

https://weeklyreport.ai/briefings/hamiltonian-nn-notebook
https://weeklyreport.ai

	Hamiltonian and Lagrange Neural Networks
	Introduction
	Primer on Hamiltonian and Lagrangian Mechanics
	Hamiltonian Mechanics
	Why Hamiltonian Equations are Useful:

	Hamiltonian Function
	Hamilton’s Equation
	Lagrangian Mechanics
	Lagrangian Function
	Euler-Lagrange Equations
	Advantages:
	Example:

	Real-World Use Cases:
	Invariants in Hamiltonian and Lagrangian Mechanics
	Why Invariants Matter:



	Hamiltonian Neural Networks (HNNs)
	Overview
	Learning the Hamiltonian Function
	Incorporating Invariants
	Zero Divergence Property
	Loss Function
	Architecture
	Advantages Over Ordinary Deep Neural Networks
	Mass-Spring Example

	Lagrange Neural Networks (LNNs)
	Overview
	Learning the Lagrangian Function
	Loss Function
	Architecture
	Advantages Over Ordinary Deep Neural Networks
	Integrating Hamiltonian and Lagrangian Mechanics with Neural Networks
	Hamiltonian Neural Networks:

	Comparative Analysis
	Similarities:
	Differences:


	Applications of Hamiltonian and Lagrangian Neural Networks in Finance
	Modeling Financial Systems
	Predictive Analysis
	Optimization
	Risk Management
	Example Applications
	Option Pricing Models
	Interest Rate Modeling
	Asset Allocation


	Resources


